Self-assembly of laminin induced by acidic pH.
نویسندگان
چکیده
The supramolecular architecture of the basement membrane is provided by two enmeshed networks of collagen IV and laminin. The laminin network is maintained exclusively by interactions among individual laminin molecules and does not depend on the presence of other extracellular matrix components. Laminin polymers can be obtained in vitro either in solution or in association with the surface of bilayers containing acidic lipids. In this work, we have tested the hypothesis that the negative charges present on acidic lipids establish an acid microenvironment that is directly responsible for inducing laminin aggregation. Using light-scattering measurements, we show that laminin does not aggregate on vesicles of neutral lipids, whereas instantaneous aggregation occurs to progressively greater extents as the proportion of acidic phospholipids in the vesicles is increased. Aggregation of laminin induced by vesicles containing acidic phospholipids occurs very rapidly, so that maximal aggregation for each condition is reached within 1 min after laminin dilution. Aggregation depends on the presence of Ca(2+) ions, is reversed by increasing ionic strength, and can be detected at laminin concentrations as low as 6 nM. In addition, we show that, in the absence of vesicles, acidification of the bulk solution can also induce laminin self-polymerization through a process that exhibits the same properties as lipid-induced polymerization. The fact that there is a correspondence between the processes of self-polymerization of laminin in acidic medium and in neutral medium but in the presence of vesicles containing negatively charged lipids leads us to propose that the microenvironment of an acidic surface may trigger the assembly of laminin networks. In vivo, such an acidic microenvironment would be provided by negatively charged sialic acid and sulfate groups present in the glycocalyx surrounding the cells.
منابع مشابه
Structure of laminin substrate modulates cellular signaling for neuritogenesis.
Laminin, a major component of basement membranes, can self-assemble in vitro into a typical mesh-like structure, according to a mass-action-driven process. Previously, we showed that pH acidification dramatically increased the efficiency of laminin self-assembly, practically abolishing the necessity for a minimal protein concentration. Here we have characterized the morphologies of laminin matr...
متن کاملpH-Responsive Schizophrenic Diblock Copolymers Prepared by Polymerization-Induced Self-Assembly
Polymerization-induced self-assembly (PISA) is used for the highly convenient and efficient preparation of ampholytic diblock copolymer nanoparticles directly in acidic aqueous solution. Cationic nanoparticles comprising a protonated polyamine stabilizer block and a hydrophobic polyacid core-forming block are formed at pH 2. Micelle inversion occurs at pH 10 to produce anionic nanoparticles wit...
متن کاملSelf-assembly of laminin isoforms.
The alpha, beta, and gamma subunits of basement membrane laminins can combine into different heterotrimeric molecules with either three full short arms (e.g. laminins-1-4), or molecules containing one (laminins-6-9) or more (laminin-5) short arm truncations. Laminin-1 (alpha1beta1gamma1), self-assembles through a calcium-dependent thermal gelation requiring binding interactions between N-termin...
متن کاملSelf-Assembly Mechanism of pH-Responsive Glycolipids: Micelles, Fibers, Vesicles, and Bilayers.
A set of four structurally related glycolipids are described: two of them have one glucose unit connected to either stearic or oleic acid, and two other ones have a diglucose headgroup (sophorose) similarly connected to either stearic or oleic acid. The self-assembly properties of these compounds, poorly known, are important to know due to their use in various fields of application from cleanin...
متن کاملTuning Chelation by the Surfactant-Like Peptide A6H Using Predetermined pH Values
We examine the self-assembly of a peptide A6H comprising a hexa-alanine sequence A6 with a histidine (H) "head group", which chelates Zn(2+) cations. We study the self-assembly of A6H and binding of Zn(2+) ions in ZnCl2 solutions, under acidic and neutral conditions. A6H self-assembles into nanotapes held together by a β-sheet structure in acidic aqueous solutions. By dissolving A6H in acidic Z...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 275 2 شماره
صفحات -
تاریخ انتشار 2000